Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model.

نویسندگان

  • M Garcia-Alloza
  • L A Borrelli
  • A Rozkalne
  • B T Hyman
  • B J Bacskai
چکیده

Alzheimer's disease (AD) is characterized by senile plaques and neurodegeneration although the neurotoxic mechanisms have not been completely elucidated. It is clear that both oxidative stress and inflammation play an important role in the illness. The compound curcumin, with a broad spectrum of anti-oxidant, anti-inflammatory, and anti-fibrilogenic activities may represent a promising approach for preventing or treating AD. Curcumin is a small fluorescent compound that binds to amyloid deposits. In the present work we used in vivo multiphoton microscopy (MPM) to demonstrate that curcumin crosses the blood-brain barrier and labels senile plaques and cerebrovascular amyloid angiopathy (CAA) in APPswe/PS1dE9 mice. Moreover, systemic treatment of mice with curcumin for 7 days clears and reduces existing plaques, as monitored with longitudinal imaging, suggesting a potent disaggregation effect. Curcumin also led to a limited, but significant reversal of structural changes in dystrophic dendrites, including abnormal curvature and dystrophy size. Together, these data suggest that curcumin reverses existing amyloid pathology and associated neurotoxicity in a mouse model of AD. This approach could lead to more effective clinical therapies for the prevention of oxidative stress, inflammation and neurotoxicity associated with AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein.

Senile plaques are polymorphous beta-amyloid protein deposits found in the brain in Alzheimer disease and normal aging. This beta-amyloid protein is derived from a larger precursor molecule of which neurons are the principal producers in brain. We found that amyloid precursor protein (APP)-immunoreactive neurites were involved in senile plaques and that only a subset of these neurites showed ma...

متن کامل

Effect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats

Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...

متن کامل

Inositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer pathology.

ITPKB phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate and controls signal transduction in various hematopoietic cells. Surprisingly, it has been reported that the ITPKB messenger RNA level is significantly increased in the cerebral cortex of patients with Alzheimer's disease, compared with control subjects. As extracellular signal-regulated kinases 1/2 activa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2007